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It is known that the character of flow of a liquid film along a vertical surface has a 
wave nature even at low Reynolds numbers. This is true because the flow of a film with a 
planar free surface is unstable [i]. In experiment two-dimensional waves are formed at some 
distance from the point of liquid escape. These waves grow rapidly in amplitudes and exit 
into a regime in which the phase velocity of the waves, their amplitude and length remain 
practically constant. However the length of the two-dimensional steady state traveling wave 
zone is usually small - further along the flow these waves break up and become three-dimen- 
sional [2]. Use of artificially imposed perturbations significantly expands the range of 
wave numbers at which two-dimensional regular waves are possible, although such waves also 
become three-dimensional, albeit significantly further from the entrance than in the case 
of natural flow [2, 3]. 

Theoretical treatment of wave flow of a liquid film in a complete formulation is ex- 
tremely complex, since it becomes necessary to solve a system of nonlinear Navier-Stokes 
equations with a free boundary not known beforehand. 

Therefore various simplifications are used for the solution. Thus, study of two-dimen- 
sional longwave perturbations for moderate flow rates can be reduced to solution of a system 
for two instantaneous values of the film thickness h and flow rate q [4]: 

Ot -{- t ,2  (q~/h) = -- 3vqlh ~ -[- gh + (Th OSh 
P a~a' (1) 

~h ~q 
~ + -g7 =o: 

where ~ is the kinematic viscosity coefficient, g is the acceleration of gravity, and o is 
the surface tension coefficient. 

System (i) is obtained by integration of the equations of motion over the y-coordinate, 
perpendicular to the flow plane xz, and use of the assumption of self-similarity of the log- 
nitudinal velocity component profile 

u = i ,5q /h(2~ /h  - -  ~lh~).  ( 2 )  

Nonsteady state solutions of this system which agree well quantitatively with experiment 
were constructed in [5, 6], and steady state traveling waves were found in [7-10]. 

By specifying together with Eq. (2) the velocity component profile in the z-direction in 
the form of a second degree polynomial 

w = 1,5Qlh(2y/h - -  y21h2), ( 3 ) 

[II] integrated the system of Navier-Stokes equations to obtain a system of equations which 
generalizes Eq. (i) to the case of three-dimensional perturbations: 

Oh . Oq . OQ 

where Q is the instantaneous flow rate in the z-direction, with the remaining quantities be- 
ing the same as in Eq. (i). 
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We note that although assumption (3) is less obvious than Eq. (i) in the planar case, 
and has not had the analogous experimental [12] and theoretical [13] confirmation, still for 
perturbations long enough in the z-direction it will not lead to results incorrect in prin- 
ciple and can be used as a model. 

In [ii], using eight terms of a dual Fourier series for base functions in the Galerkin 
method nonsteady state solutions of system (4) periodic in x and z were considered. The goal 
of the present study is to find steady state traveling waves. 

W i t h  t h e  a i d  o f  t h e  r e p l a c e m e n t s  h = h/ho, "q = q/qo, Q = Q/qo, x =  (We/3)~/~x/ho, ~ =  (We/3)~/2z/ho, 
{-= (We/3)I/~h2ot/qo, p = (3We)i/2/Re, F = (We/3)I/~/F r (where q0 is the mean wave flow rate along 

2 8 the x-axis, and h 0 is the mean film thickness, We = cho/pq~, Re = qo/V, Fr= qo/gho),, omitting the 
dedimensionalization symbol, we rewrite Eq. (4) in the form 

o-T + 1,2 k ~ - U  + 7 z  = - - p q / h S + F h +  ~--~x~+o--~-ffz~]~ 

0-7 + t'2k'g~'z -~- + ez ~ . / =  . k~z~ + OzOzS]', ( 5 )  

Oh Oq . oQ 
. 0-T+~+~=0. 

Linearizing Eq. (5) and representing the solution in the form 

h 1 = A exp [io~(x - -  ct) -{- i~z] -}- c . c . ,  

q~ = B1A e xp  [ia(x - -  ct) q- if3z] -4- c . c . ,  ( 6 )  

Q1 = D1A exp [ia(X --  ct) + i~z] + c .c .  

( w h e r e  c . c .  d e n o t e s  t h e  c o m p l e x  c o n j u g a t e ) ,  i t  i s  s i m p l e  t o  show t h a t  p e r t u r b a t i o n s  w i t h  
wave n u m b e r s  a and  8 l y i n g  w i t h i n  ( w i t h o u t )  t h e  s e m i c i r c l e  o f  F i g .  1,  c u r v e  1, 

(as + ~)~ = ~, ~ 7) 

a r e  u n s t a b l e  ( s t a b l e ) ,  s i n c e  t h e y  h a v e  an  i m a g i n a r y  c o m p o n e n t  c i > 0 ( c  i < 0 ) .  P e r t u r b a t i o n s  
with wave numbers a and ~ satisfying Eq. (7) are neutral, with c = 3, and the coefficients B I 
and D l in Eq. (6) are expressed in the following manner: 

Ox = 3a~ / ( t , 8a  + ip), B 1 ~- 3 - -  ~DJa .  ( 8 )  

The s o l u t i o n  o f  Eq.  ( 6 )  b r a n c h e s  f r o m  t h e  p l a n o p a r a l l e l  h = 1,  q = 1, Q = 0 t o  t h e  p l a n e  
of the wave numbers a, ~ along line (7) and is valid for the case where A is infinitely small. 

To find steady state traveling waves of finite amplitude which are a solution of system 
(5), we transform therein to the variables ~ = x - ct, z = z: 

 0q, 
- -  c - -~  + t ,2 ~-~-~ T + = - -  pq/h~ + Fh + 3h 

- -c~-(  + + N T  I = - - p O l h '  + 3hk~z~ 

' Oh Oq OQ - r 2 4 7  + =o. 

( osh o3h ) 

ash (9) 

For the future we will limit our search to solutions of system (9) (periodic in ~ and 
z) for which h is a function symmetric with respect to z. 

Since the amplitude of perturbations which are neutral in linear stability theory are 
infinitely small, it is clear that the amplitude of steady state waves with wave numbers 
lying near curve (7) will be finite, but small. Therefore for such a wave number we will 
seek a solution of Eq. (9) in the form of a series in the small parameter: 

h = I + eh 1 ~ e2h2 -~ ..., q = i + zq, ~ e2q2 ~- ..., 

Q =  eQi + e2Qs + . . . ,  
F .~ Fo + eF1 -~- e2F2 -~ .... r = Co • ec 1 -~- 82% "Jr" ... 

F o l l o w i n g  [ 1 4 ] ,  we i n t r o d u c e  a s e t  o f  r a p i d  and  s l o w  v a r i a b l e s :  

~o ~, ~,~ = e ~, Zo = z, z,~ ~z ,  n = t ,  2, 
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From the zeroth approximation in ~ we obtain F 0 = p. From Eq. 
proximation we have a linear system with solution in the form 

h , =  Ad~o (ae~o § ~e-~%) + c.c., 

qx = B,  A e ~ ~  (ae ~z~ + ae -i~*o) + c . c . ,  

Qt = D,Ae! ~r176 (ae ~oz. - -  ; e  - ~ % )  + e . c . ,  

where ~, 6, B~, D~ satisfy Eqs. (7), (8); c 0 = 3. 

(9), for the first ap- 

(10) 

It follows from the symmetry of the unknown solutions that A can be a function only of 
gl, ~2,..-, while a depends on z~, z=, .... Determination of their form by consideration of 
higher approximations permits determination of the relationship between corrections to the 
wave numbers a and 6 and the value of the amplitude of the first harmonic. But, for example, 
knowing the correction to 8 - h6, one can simply say that the solution is near a new point on 
the curve of Eq. (7), at which 81 = 8 + AS. Therefore in Eq. (I0) we assume a = const and 
include its value in A; in other words, we will seek a solution of finite amplitude, rigidly 
fixing the value of the wave number 8. This can be done almost everywhere on the curve of 
Eq. (7), with the exception of the immediate vicinities of several separate points. 

For the parameter e we may choose the value of A. It can easily be shown that from 
the requirement of absence of secular terms in the second approximation 

c, = O, OA/O~t = O, F, = O. 

With consideration of this, for the second approximation we arrive at the system 

I8  O ] �9 
+ t ,2  ~ (2q3 - -  ha + (q~ - - h O  2) + ~ (Q~ + Qt (q~ - hO) = --  p (q2 - -  3h2 + 3h[ - -  2q~hx) + F 2 -:k 

+ 3 ~ + h, N + + h, 
agoOZo ] 

[0~o oO~] L'~z~ + t. Oz~ + ~+h.~_-T"~ ,;(11) a ' 
' " {Oah2 h o 3 h l  03h2 O h I ] ee~ 

~ ~ ~_ ~ - Co % + % _ ~ = o,; 

s o l v i n g  w h i c h ,  we f i n d  

h , -  A2A%i2~*~o (e~21~% + e-*21~%) + A 31 A 13 (~,2,,o + e-,.O,o) + : A , A % i 2 ~ o .  e .c . ,  

q2 -- B2a3o~3=to (e~3~*o + e-~3~.o) + B, I A 13 (~2~.o + ,-~2~o) + B~a2~2~.~o + ~.r 

Q2 = D3 A~d2~~ ( d~*~ --  e-~3~o) + r  , 

A2 = . [ t , 2 ( ( z ( B ~  - - . i )  -+: ~D~) ~ + i,5~z 2 + 1,5t=pl/9(z ~, 

D~ = [--24icz~A~ ' 2,4i((z(Bt ~ i)  + ~Dt)Dt + 2pD~-- 3ia~]/(p--3.,6i(z)~ 

A3 = (2,413 [Dx [ 3 --.  ip(D~ --  DO - -  3o:~1)/24[~a~ 

Ba = 3A3 -{- 3 - -  25,2(z~3/(p 3 + 3,24(z3),: 

where 

(12) 

823 



A4 = (2,4~(B1 - -  i)  ~ + 3~ g - -  ~p(3 - -  2B0)/3~(t  - -  4a~)~ B4 = coA4, (13)  

S i n c e  f o r  t h e  d e d i m e n s i o n a l i z a t i o n  o f  Eq. (4 )  we c h o s e  as  c h a r a c t e r i s t i c  s c a l e s  t h e  
mean wave f l o w  r a t e  q0 and t h e  mean t h i c k n e s s  h0,  f rom t h e  c o n d i t i o n  o f  a b s e n c e  o f  s e c u l a r  
t e r m s ,  f rom t h e  f i r s t  e q u a t i o n  in  Eq. (11)  we h a v e  

F2 = 4p(3 - -  B1 - -  B1)]A [2. 

From the condition of absence of secular terms in the third approximation we obtain 

6i~ (i - -  2~) aA + {p [12i~(D~ + 51) - -  45iu + 6i~ (A~ + A~ + 2 Aa) - -  

- -  4 i~  (D1A~ + 2DtA~)I + 9.~6 [ ~  (Ha - -  A 8 + A~ + A 4 - -  4~5) - -  ~z [ D~ 12 - -  ( 1 4 )  

- -  a~ (D~A~ - -  D~ (A~ - -  B a - -  3 ) +  D~)I + (6~ ~ + 42~ 4) Az § 2 i~A~ + 

+ (21= ~ + 3~ 4) Aa}] A I ~ A - -  c~ (3~6=~ + i a p )  A = 0 ,  

Representing the solution of Eq. (14) in the form A = A 0 e i ~  and separating the imagi- 
nary and real components, we find expressions for the corrections to the wave number a and 
the phase 

= ]a(~, ~, p)]Ao] 2, c~ = ]z(u, ~, p)iA0iL ( 1 5 )  

We w i l l  n o t  p r e s e n t  t h e  e x p l i c i t  f o r m s  o f  t h e  f u n c t i o n s  f~ and f2 b e c a u s e  o f  t h e i r  cumber -  
s o m e n e s s .  

A n a l y z i n g  Eqs .  ( 1 3 ) - ( 1 5 ) ,  i t  i s  s i m p l e  t o  show t h a t  f o r  s u f f i c i e n t l y  s m a l l  v a l u e s  o f  
[A0[ t h e  t e r m s  o f  t h e  s e c o n d  a p p r o x i m a t i o n  a r e  s m a l l  i n  c o m p a r i s o n  t o  t h o s e  o f  t h e  f i r s t  f o r  
all a and ~ lying on the curve of Eq. (7), with the exception of the vicinities of the points 

= i, 8 = 0; a = 0, 8 = 0; a = 8 = 0.5. In fact, it is evident from Eq. (13) that upon 
approach to these points some of the coefficients in Eq. (12) increase without limit, so 
that the solutions obtained are inapplicable. These points require special examination. 
For the remaining points of Eq. (7) calculations with Eq. (15) show that if 0.5 < a < i, then 
for any values of p c 2 < 0, ~ < 0. The latter means that the wave regime branches into a 
region of linear instability - a soft type of branching. For perturbations having a in the 
interval (0; 0.5) the situation is more complex - for sufficiently high values of p ~ i the 
correction ~ over the entire interval is negative. This indicates that for such ~ the wave 
vectors of steady state traveling waves of low but finite amplitude lie outside the instabil- 
ity region. With decrease in p (which corresponds to growth in Re) the value of the negative 
correction to the modulus decreases, and at p* = 0.81158 for a* = 0.29 (correspondingly 8" = 
0.454) it vanishes. With further decrease in p an interval of a appears and increases in 
size, in which ~ > 0, i.e., branching into the region of instability occurs again. The cor- 
rection to the phase velocity in the vicinity of a z 0.5 (but with a < 0.5) for any value of 
p is always positive. But with motion along the arc of Eq. (7) in the direction of lower 
the value of c a decreases, passing through zero at the point a+. With increase in p a+ de- 
creases, and as p + 0, a+ ~ 0.5. 

With approach to the point ~ = 0, 8 = 0 along the curve of Eq. (7) for any finite value 
of p < p*, beginning with a, < ~*, periodic weakly nonlinear regimes again branch outward 
from the instability region. The value of a, falls with decrease in p. In the vicinity of 
the point a = 0, 8 = 0 wave regimes with amplitudes ~e are possible, if the components of the 
wave vector are of the order of smallness 8 ~ e, a ~ e =. Moreover, it is necessary that the 
components of the wave vector at which the change in the type of branching occurs be of the 
same order of magnitude. The latter is possible if the order of smallness of the parameter 
p ~ ~z 

In obtaining a solution in the vicinity of the point a = i, 8 = 0 it must be considered 
that for neutral perturbations with components of the wave vector lying on the curve of Eq. (7) 
(7), at 8 ~ i, a = I - 8 ~ Correspondingly, the correction to ~ when finding a solution with 
amplitude ~e must be of a greater order of smallness than for 8- Therefore in the expression 
for the first approximation we may write 

h I = Ae~0 + c . c . , q l  = 3h~, Q~ = 0, 

where  A i s  a f u n c t i o n  o f  t h e  s low c o o r d i n a t e s  z~ ,  $2, . . . .  

The s e c o n d  a p p r o x i m a t i o n  h a s  t h e  fo rm 
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h,- - - -A~A2e~o+c.c . ,  q~ 3h~, A, 0 , 7 - - i p / 6 ,  Q , = B ~ - - ~  o + c . c . ,  B,  ---- - -  3 / ( p - -  l ,80,  
~ -  , ~ - -  O z  1 �9 

and the requirement of absence of secular terms in the third approximation leads to the equa- 
tion 

(%6 + ~p)A + 6 ~:~, + ~ 6i ~ = (p2 _ 35,8 2 _ 30,3ip) I A I ~ A. C2 

Using the representation A = A0e~2(e ~z~ + e-ir we obtain 

c ~ =  --60,61Ao] 2, ~ -5 ~ = _ (p2  + 73,26)]Ao1~/3. (16)  

From this it follows that as for all a > 0.5 in the vicinity of the point a = I, ~ = 0 the 
weakly nonlinear wave regimes branch into the instability region and their phase velocity is 
less than c o = 3. At ~ = 0 Eq. (16) defines the correction values for plane waves. 

In finding the solution in the vicinity of ~ = 0.5, B = 0.5 we note that [since for a 
wave with this wave vector one of the even harmonics (~ = i, ~ = 0) has a wave vector also 
lying on the neutral curve of Eq. (7)] in the first approximation in place of Eq. (i0) we 
have 

h 1 = Ae~U~(ae~] ' -5 ae -~z]~) -5 Ne~ -5 c . c . ,  

qt = B~Ae~I~( ae~/~ -5 ~e-i~l~) -5 3Ne~ -5 c . c . ,  

Q~ = D~Ae~l~(ae ~/~ -- ae -~1~) -5 c . c . ,  

Here A and N are slowly changing functions of the variable ~, and a is a function of z. Gen- 
erally speaking, aA and N may be of different orders of smallness. Using the deviations of 
the wave number components from the point (0.5, 0.5) as small parameters, in analogy to [15] 
we seek a solution in the form 

A = A0e ~ ,  a = a0e~r N = N0e ~ .  

The v a l u e s  o f  A 0 and a 0 can  be  c o n s i d e r e d  r e a l  w i t h o u t  l i m i t i n g  g e n e r a l i t y .  S e t t i n g  
t h e  s e c u l a r  t e r m s  in  t h e  s u b s e q u e n t  a p p r o x i m a t i o n  e q u a l  t o  z e r o ,  a f t e r  p e r f o r m a n c e  o f  s i m p l e  
b u t  cumbersome c a l c u l a t i o n s  t o  d e t e r m i n e  A 0, a 0, N 0, and t h e  c o r r e c t i o n s  t o  t h e  p h a s e  v e l o c i t y  
c~ we f i n d  t h e  s y s t e m  

(6~ - -  c1(3,6 -5 ip))No -5 (2,.4(2 - - D 1 )  ~ -5 t ,5  + 2//,(3 - -  2D0) X(Aoao) ~ ---- O~ 
(17) 

6 ,  -5 3~ 2 - -  C1(1,8 -5 ip) -5 (4,8(1 - -  D--,) -5 3 -5 2ip(3 - -  2--D0)N0 = O, 

s o l v i n g  w h i c h ,  we s e e  t h a t  i n  t h e  wave number  p l a n e  in  r e g i o n s  whe re  ~ < 0  ( q u a d r a n t s  I I  
and IV o f  a c o o r d i n a t e  s y s t e m  w i t h  c e n t e r  a t  p o i n t  a = ~ = 0 . 5  and a x e s  d i r e c t e d  i n  t h e  d i -  
r e c t i o n  o f  i n c r e a s e  o f  a and  8, s e e  F i g .  1) two s o l u t i o n s  e x i s t .  Fo r  one  o f  t h e s e  t h e  v a l u e  
o f  t h e  c o r r e c t i o n  t o  t h e  p h a s e  v e l o c i t y  c o c 1 > 0 ,  w h i l e  f o r  t h e  o t h e r  c 1 < 0. Q u a d r a n t s  I 
and I I I  h a v e  one  s o l u t i o n  e a c h ,  w i t h  c 1 > 0 and c l  < 0, r e s p e c t i v e l y .  

I n  c o m p a r i n g  r e s u l t s  o f  c a l c u l a t i o n s  w i t h  Eqs .  (15)  and ( 1 7 ) ,  i t  becomes  c l e a r  t h a t  
t h e r e  a r e  a t  l e a s t  two t y p e s  o f  w e a k l y  n o n l i n e a r  s o l u t i o n s  o f  s y s t e m  ( 9 ) .  The r e g i o n  in  
wh ich  t h e  f i r s t  t y p e  e x i s t s  f o r  a [ 0 .5  l i e s  be low t h e  c u r v e  o f  Eq. ( 7 ) ,  and in  t h e  v i c i n i t y  
o f  a = B = 0 .5  o c c u p i e s  q u a d r a n t s  I I  and IV. The s o l u t i o n  w i t h  c o r r e c t i o n  t o  t h e  p h a s e  v e -  
l o c i t y  c 1 < 0, wh ich  b r a n c h e s  w e a k l y  f rom a p l a n o p a r a l l e l  s t a t e  f o r  a > 0 . 5  a l o n g  t h e  c u r v e  
o f  Eq. ( 7 ) ,  p a s s i n g  be low t h e  p o i n t  a = 8 = 0 . 5  w i t h  c o n t i n u o u s  c h a n g e  in  wave n u m b e r s ,  and 
at a < 0.5 exiting into a linear stability region with finite amplitude on the curve of Eq. 
(7). As = + 0.5, ~ + 0.5 with = < 0.5, ~ > 0.5 this solution disappears. In the future we 
will speak of such wave regimes as type I waves. 

Solutions of the second type branch from planoparallel along the curve of Eq. (7) for 
< 0.5 everywhere at p > p* into the linear stability region, while for p < p* there exists 

an interval of a values with soft type branching (~, < a < ~** < 0.5). The region of exis- 
tence of these solutions in the vicinity of the point a = ~ = 0.5 includes quadrants II, I, 
and IV. 

To find wave regimes with wave numbers differing markedly from neutral, system (9) was 
solved numerically. The solution was sought in the form of finite sums of double Fourier 
series 
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h = E  E q= E E q .e (18) 
m = - - M  n ~ - - N  m = - - M  n = - - N  

In obtaining the majority of the above results it was assumed that M = N = 3, although 
for some parameter values calculations were performed with M = 7, N = 3. The method used 
for solution involved Fourier transformation and was similar to that used in [8, i0] for 
plane waves. Initially solutions were sought near the neutral curve, where the analytical 
results work well as an initial approximation. Movement over wave numbers away from the 
curve of Eq. (7) was accomplished continuously. Below we present results obtained for 

p =i>p*, p = 0 , 5 < p * .  

Figure 2 shows the square of the amplitude of steady state waves A s= ]hmax" hmin] 2 as a 
function of wave number ~ for a horizontal section of the linear instability region for the 
level $ = 0.48. Lines i, 2 correspond to p = i, 0.5, while the indices a, b indicate waves 
of the first and second types. 

For ~ > 0.5 the characteristic form of a type I wave is shown in Fig. 3a, where p = 0.5, 
F = 0.498, ~ = 0.55, ~ = 0.48, c = 2.923, A = 0.212. For ~ S 0.5 these waves become more 
"nonlinear" - their amplitude, as is obvious, begins to increase rapidly. Their typical form 
is shown in Fig. 3b, where p = 0.5, F = 0.492, ~ = 0.45, ~ = 0.48, c = 2.772, A = 0.302. 

For these values of ~ with further decrease the harmonic H20 increases rapidly as com- 
pared to others. This is apparently related to the fact that having entered the linear in- 
stability region after passage through the line ~ = 0.5, with decrease in the value of the 
wave number ~ the harmonic H20 at fixed ~ is the only one which continues to penetrate fur- 
ther into this region. 

To calculate waves of this type with = 5 0.4 a large number of harmonics are required. 
Thus, for the variants calculated with M = N = 3 and M = 7, N = 3 in the sums of Eq. (18) 
for 0.5 E ~ ~ 0.64, the difference in thicknesses and wave velocities comprises ~1%, while 
for ~ = 0.4 the solutions differ by NI0%, although their qualitative behavior remains the 
same. 

As is evident from Fig. 2, type II waves at values of the parameter p = 1 (curve ib) 
branch into the stability region, while at p = 0.5 (curve 2b) there is a soft branching regime 
[here ~n = 0.36 lies on the neutral curve of Eq. (7)]. These results are in complete agree- 
ment with those obtained analytically. Thus, it follows from Eq. (15) that for p = 0.5 the 
change in the type of branching occurs at the point ~** = 0.4289 on the curve of Eq. (7). 
From the calculations we find that ~** lies in the range 0.425-0.423. 

In Fig. i within the linear stability region a zone is shaded, in which type II waves 
were found for p = I. Although as follows from Eq. (15) such a zone also exists for lower 
values of ~, it then practically merges with the neutral curve. In accordance with results 
obtained by solving Eq. (17), the right-hand boundary goes beyond the line ~ = 0.5, but by 
only such a small distance (~ < 0.503) that it is not visible in the scale used. The anal- 
ogous zone for p = 0.5 is still narrower, and is limited on the left by the line ~ = ~** = 
0.4289. 

The characteristic form of a type II wave is shown in Fig. 4. Here p = 0.5, F = 0.485, 
= 0.475, ~ = 0.48, c = 2.975, A = 0.481. 

Type II waves move more rapidly than type I. Thus, while for the latter the phase ve- 
locity values are always less than c o = 3 and with removal from the branching point [~ > 0.5 
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on the curve of Eq. (7)] differ markedly therefrom (up to 20-25% for the parameter values 
considered), for type II waves the difference from c o does not exceed 1-1.5% to one or the 
other side. 

Figure 5 shows the dependence of A 2 on the wave number for several vertical sections 
= const, with curve i showing how the amplitude of a type I wave in the section ~ = 0.64 

varies with motion from the branching point (6n = 0.48) into the depths of the instability 
region. It is evident that up to 6 ~ 0.35 the amplitude increases ~(8 - 6n )i/2 [a dependence 
analogous to Eq. (15)]. It is clear that these waves are quite close to weakly nonlinear 
(for ~ > 0.5). This is also indicated by their form (see Fig. 3) - almost sinusoidal be- 
havior in the $- and z-directions. 

Similar relationships for the same type of wave in the section ~ = 0.45 are shown by 
curve 2. It is evident that with immersion into the instability region the amplitude also 
increases. Upon exit from the linear instability region (6 > 6n = 0.4975) the harmonic H20 
increases rapidly, producing the dominant contribution to A. This leads to a situation in 
which the spatial waves begin to degenerate into weak plane waves modulated in the z-direc- 
tion (Fig. 6, where p = 0.5, F = 0.481, ~ = 0.45, 6 = 0.532, c = 2.813, A = 0.314), which 
become planar at some 6, = 6,( ~, P). Thus in the section ~ = 0.45 for p = 1 6, = 0.594, for 
p = 0,5 6, = 0~533. Control calculations with M = 7, N = 3 in Eq. (18) indicated that the 
change in 6, does not exceed 3%. The function 6, = 8,(~, p) for p = i is shown by line 2 
of Fig. i, which requires a larger number of harmonics for extension into the region with 
~<0,4. 

Similar degeneration of spatial solutions into plane waves with double wave number was 
observed in [15] for an equation describing behavior of perturbations on a film for Re S i. 

The behavior of a type II wave for ~ = 0.47 is shown by curve 3 of Fig. 5. For motion 
into the depths of the instability region, in contrast to type I waves the "high" harmonics 
H3n increase much more rapidly, and even for calculation of waves with ~ S 0.45 the number 
of harmonics must be increased. It can thus be said that type II waves are more nonlinear 
than type I waves. 

i. 
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3. 
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5. 
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FLEXURAL PERTURBATIONS OF FREE JETS OF MAXWELL AND DOI -EDWARDS LIQUIDS 

A. L. Yarin UDC 532.522+532.135 

Flexural perturbations of high-velocity free jets of drop liquids moving in air 
are reinforced by the fact that the air pressure on the concave sections of the 
jet surface is greater than onthe convex sections. The linear and nonlinear 
stages of development of flexural perturbations were studied in [i-5] for viscous 
Newtonian fluids. The effect of elastic stresses in the fluid on the growth of 
flexural perturbations of jets was first examined in [6], where it was assumed in 
an analysis of the growth of small disturbances that surface tension was constant 
along the jet, i.e., the investigators actually studied a tensed string. The stud- 
ies [7, 8] examined the linear stage of growth of flexural perturbations of jets of 
Maxwell liquids. Our goal here is to analyze the dynamics of long-wave flexural 
perturbations of jets of viscoelastic fluids in both the linear and nonlinear 
stages of development. The rheological behavior of the fluid is described by two 
models - the phenomenological (Maxwell) model and the physical-molecular (Doi- 
Edwards) model. It is shown that the disturbances are oscillatory in character in 
the nonlinear stage of development. Meanwhile, the results of calculations per- 
formed with the Maxwell (M) and Doi-Edwards (DE) rheological models in the given 
problem agree with each other quantitatively as well as qualitatively. 

i. We will examine a free jet of a drop liquid moving at the velocity U 0 in air. In 
the undisturbed state, the axis of the jet is straight, while its cross section is a circle 
of radius a 0. The densities of the liquid and air will be denoted by p and Of, while the 
surface tension of the liquid will be denoted by ~. The liquid is assumed to be viscoelas- 
tic. As usual, the relationship between the deviator of the stress tensor o' and the kine- 
matic and geometric parameters is determined by the rheological equation of state. From 
among rheological equations of state for concentrated systems in the literature, we will 
choose the two with the clearest physical meaning. The first, the Maxwell rheological equa- 
tion, determines the deviator of the stress tensor in the form [9] 

t 

o 
m~ 
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